Returns a data.table
with one row per gene set.
This data.table
contains columns:
name of gene set
Z statistic for continuous component
wald P value
difference in continuous regression coefficients between null and test sets (ie, the numerator of the Z-statistic.)
Z statistic for discrete
wald P value
difference in discrete regression coefficients between null and test sets.
combined discrete and continuous Z statistic using Stouffer's method
combined P value
FDR adjusted combined P value
# S4 method for GSEATests
summary(object, ...)
A GSEATests
object
passed to calcZ
data.table
gseaAfterBoot
## See the examples in gseaAfterBoot
example(gseaAfterBoot)
#>
#> gsAftB> data(vbetaFA)
#>
#> gsAftB> vb1 = subset(vbetaFA, ncells==1)
#>
#> gsAftB> vb1 = vb1[,freq(vb1)>.1][1:15,]
#>
#> gsAftB> zf = zlm(~Stim.Condition, vb1)
#>
#> Done!
#>
#> gsAftB> boots = bootVcov1(zf, 5)
#>
#> gsAftB> sets = list(A=1:5, B=3:10, C=15, D=1:5)
#>
#> gsAftB> gsea = gseaAfterBoot(zf, boots, sets, CoefficientHypothesis('Stim.ConditionUnstim'))
#>
#> gsAftB> ## Use a model-based estimate of the variance/covariance.
#> gsAftB> gsea_mb = gseaAfterBoot(zf, boots, sets, CoefficientHypothesis('Stim.ConditionUnstim'),
#> gsAftB+ control = gsea_control(var_estimate = 'modelbased'))
#>
#> gsAftB> calcZ(gsea)
#> , , metric = Z
#>
#> comp
#> set cont disc
#> A -1.7031548 -1.074742
#> B -0.7446833 -4.273887
#> C NaN -3.954742
#> D -1.7031548 -1.074742
#>
#> , , metric = P
#>
#> comp
#> set cont disc
#> A 0.1270547 0.319242117
#> B 0.4948398 0.002754653
#> C NaN 0.005470883
#> D 0.1270547 0.319242117
#>
#>
#> gsAftB> summary(gsea)
#>
#> gsAftB> ## Don't show:
#> gsAftB> stopifnot(all.equal(gsea@tests['A',,,],gsea@tests['D',,,]))
#>
#> gsAftB> stopifnot(all.equal(gsea@tests['C','cont','stat','test'], coef(zf, 'C')[15,'Stim.ConditionUnstim']))
#>
#> gsAftB> ## End(Don't show)
#> gsAftB>
#> gsAftB>
#> gsAftB>