Given a fitted model, return the standard errors of the coefficient

se.coef(object, ...)

Arguments

object

a model implementing vcov

...

passed to methods

Value

vector or matrix

See also

ZlmFit-class

Examples

#see ZlmFit-class for examples
example('ZlmFit-class')
#> 
#> ZlmFt-> data(vbetaFA)
#> 
#> ZlmFt-> zlmVbeta <- zlm(~ Stim.Condition+Population, subset(vbetaFA, ncells==1)[1:10,])
#> 
#> Done!
#> 
#> ZlmFt-> #Coefficients and standard errors
#> ZlmFt-> coef(zlmVbeta, 'D')
#>        (Intercept) Stim.ConditionUnstim PopulationCD154+VbetaUnresponsive
#> B3GAT1  -4.1795641           0.63282096                      -1.162182250
#> BAX     -0.9330077           0.02794714                      -0.162052054
#> BCL2    -3.9226304          -2.20112377                       1.332228054
#> CCL2    -3.8309742           0.54760417                       0.147212758
#> CCL3    -2.3287704          -1.94930881                      -0.567152079
#> CCL4    -2.9386008          -1.06755978                      -0.003368973
#> CCL5    -1.2350667           0.09455937                      -0.484094746
#> CCR2    -4.1050742           1.37877860                       1.504033462
#> CCR4    -0.1126440          -0.21758890                      -0.839917265
#> CCR5    -2.7417205          -1.20694083                       0.521925468
#>        PopulationCD154-VbetaResponsive PopulationCD154-VbetaUnresponsive
#> B3GAT1                     -1.14875333                       -0.16659777
#> BAX                         0.45518519                       -0.46291603
#> BCL2                       -1.29400053                       -0.39116499
#> CCL2                        0.84204812                        0.14680392
#> CCL3                       -0.14648827                       -0.60189062
#> CCL4                        0.02118041                       -1.25132594
#> CCL5                       -0.65755684                       -0.41313077
#> CCR2                        0.40289360                        0.39925195
#> CCR4                       -0.24604817                       -0.68742757
#> CCR5                       -0.16103855                        0.02099718
#>        PopulationVbetaResponsive PopulationVbetaUnresponsive
#> B3GAT1                -1.8211123                 -0.53512412
#> BAX                    0.5582425                  0.53846239
#> BCL2                   2.0919143                  1.91118512
#> CCL2                  -0.7797822                 -2.02874891
#> CCL3                  -0.7669146                 -2.46844725
#> CCL4                  -2.1491640                 -2.15309456
#> CCL5                  -0.8123545                 -0.94068157
#> CCR2                  -0.4731219                  0.18547502
#> CCR4                  -0.1364576                 -0.01272681
#> CCR5                  -0.5077805                 -0.12742084
#> 
#> ZlmFt-> coef(zlmVbeta, 'C')
#>        (Intercept) Stim.ConditionUnstim PopulationCD154+VbetaUnresponsive
#> B3GAT1    18.19441           -1.7969063                                NA
#> BAX       17.67008           -0.6534516                        -0.2356154
#> BCL2      18.73554            1.3286670                        -1.3753715
#> CCL2      23.94679           -7.3355989                        -3.6985974
#> CCL3      19.86182                   NA                         3.2750181
#> CCL4      19.54785                   NA                         1.2579223
#> CCL5      20.07363            0.4504418                        -0.2026483
#> CCR2      15.27429           -1.2269270                         4.1759840
#> CCR4      18.03446           -0.3702826                        -0.1011834
#> CCR5      16.28993            0.9461661                         1.1537964
#>        PopulationCD154-VbetaResponsive PopulationCD154-VbetaUnresponsive
#> B3GAT1                              NA                        -0.5500307
#> BAX                        -0.19649762                        -0.2783088
#> BCL2                                NA                        -3.1850947
#> CCL2                       -7.04188444                        -3.9220153
#> CCL3                       -0.04812137                        -0.6043503
#> CCL4                        2.77190815                        -2.5532715
#> CCL5                       -0.84757938                        -1.5303864
#> CCR2                        3.19304135                         4.0151403
#> CCR4                       -0.57583680                        -0.7602052
#> CCR5                       -0.51211945                        -0.6646556
#>        PopulationVbetaResponsive PopulationVbetaUnresponsive
#> B3GAT1                        NA                          NA
#> BAX                  -0.04213554                 -0.01140701
#> BCL2                 -1.58527659                 -2.32150932
#> CCL2                          NA                          NA
#> CCL3                  0.45944273                          NA
#> CCL4                          NA                          NA
#> CCL5                 -1.61445447                 -1.33608326
#> CCR2                  3.31403666                  2.07650762
#> CCR4                 -0.26166401                 -0.75331686
#> CCR5                 -1.26236131                 -1.52747203
#> 
#> ZlmFt-> se.coef(zlmVbeta, 'C')
#>         
#> X1       (Intercept) Stim.ConditionUnstim PopulationCD154+VbetaUnresponsive
#>   B3GAT1   1.1195139            1.9390550                                NA
#>   BAX      0.2289293            0.2625570                         0.4158706
#>   BCL2     1.1852624            1.2983899                         1.3686231
#>   CCL2     2.5224874            4.3690763                         4.3690763
#>   CCL3     1.4009323                   NA                         3.1325799
#>   CCL4     1.7441805                   NA                         3.2630629
#>   CCL5     0.4951370            1.0038683                         1.0106941
#>   CCR2     1.1047933            1.2757054                         1.2757054
#>   CCR4     0.2983985            0.4372988                         0.6361878
#>   CCR5     0.6656093            2.1048414                         0.9984140
#>         
#> X1       PopulationCD154-VbetaResponsive PopulationCD154-VbetaUnresponsive
#>   B3GAT1                              NA                         1.9390550
#>   BAX                          0.3643741                         0.3574157
#>   BCL2                                NA                         1.6762142
#>   CCL2                         3.5673358                         3.5673358
#>   CCL3                         2.6825812                         2.4264860
#>   CCL4                         3.2630629                         4.2723522
#>   CCL5                         1.0847908                         0.7768348
#>   CCR2                         1.5624136                         1.3530899
#>   CCR4                         0.5532457                         0.4774376
#>   CCR5                         1.2452410                         0.9413137
#>         
#> X1       PopulationVbetaResponsive PopulationVbetaUnresponsive
#>   B3GAT1                        NA                          NA
#>   BAX                    0.3211103                   0.3241627
#>   BCL2                   1.2670988                   1.2983899
#>   CCL2                          NA                          NA
#>   CCL3                   3.1325799                          NA
#>   CCL4                          NA                          NA
#>   CCL5                   1.0362222                   0.9807059
#>   CCR2                   1.8596442                   1.5624136
#>   CCR4                   0.4777267                   0.4725825
#>   CCR5                   1.6304032                   1.0869354
#> 
#> ZlmFt-> #Test for a Population effect by dropping the whole term (a 5 degree of freedom test)
#> ZlmFt-> lrTest(zlmVbeta, 'Population')
#> Refitting on reduced model...
#> 
#> Done!
#> , , metric = lambda
#> 
#>         test.type
#> primerid      cont      disc    hurdle
#>   B3GAT1  0.000000  3.293892  3.293892
#>   BAX     1.072472 10.728081 11.800553
#>   BCL2    5.443797 20.567934 26.011731
#>   CCL2    4.103765  4.775242  8.879007
#>   CCL3    1.523584  7.006491  8.530076
#>   CCL4    1.516648  8.444875  9.961523
#>   CCL5    5.572644  5.389674 10.962318
#>   CCR2   12.540757  4.640800 17.181557
#>   CCR4    4.607460  8.728194 13.335653
#>   CCR5    7.136405  1.526627  8.663031
#> 
#> , , metric = df
#> 
#>         test.type
#> primerid cont disc hurdle
#>   B3GAT1    0    5      5
#>   BAX       5    5     10
#>   BCL2      4    5      9
#>   CCL2      3    5      8
#>   CCL3      4    5      9
#>   CCL4      3    5      8
#>   CCL5      5    5     10
#>   CCR2      5    5     10
#>   CCR4      5    5     10
#>   CCR5      5    5     10
#> 
#> , , metric = Pr(>Chisq)
#> 
#>         test.type
#> primerid       cont         disc     hurdle
#>   B3GAT1 1.00000000 0.6547769674 0.65477697
#>   BAX    0.95651117 0.0570459966 0.29862654
#>   BCL2   0.24471407 0.0009773063 0.00203398
#>   CCL2   0.25047521 0.4439211826 0.35260548
#>   CCL3   0.82245576 0.2201579879 0.48173135
#>   CCL4   0.67843337 0.1333623010 0.26773693
#>   CCL5   0.35004597 0.3701952302 0.36046135
#>   CCR2   0.02808429 0.4612686366 0.07044188
#>   CCR4   0.46563569 0.1204092082 0.20550576
#>   CCR5   0.21069179 0.9099767975 0.56435354
#> 
#> attr(,"test")
#> [1] "Population"
#> 
#> ZlmFt-> #Test only if the VbetaResponsive cells differ from the baseline group
#> ZlmFt-> lrTest(zlmVbeta, CoefficientHypothesis('PopulationVbetaResponsive'))
#> Refitting on reduced model...
#> 
#> Done!
#> , , metric = lambda
#> 
#>         test.type
#> primerid       cont      disc     hurdle
#>   B3GAT1 0.00000000 2.2974635  2.2974635
#>   BAX    0.01776885 2.5081546  2.5259234
#>   BCL2   1.80508046 9.4881861 11.2932665
#>   CCL2   0.00000000 0.6678630  0.6678630
#>   CCL3   0.02425584 1.1530015  1.1772574
#>   CCL4   0.00000000 3.8914009  3.8914009
#>   CCL5   2.54893181 3.3702326  5.9191644
#>   CCR2   3.99053248 0.1406114  4.1311439
#>   CCR4   0.30752656 0.1884803  0.4960069
#>   CCR5   0.73461509 0.3702349  1.1048500
#> 
#> , , metric = df
#> 
#>         test.type
#> primerid cont disc hurdle
#>   B3GAT1    0    1      1
#>   BAX       1    1      2
#>   BCL2      1    1      2
#>   CCL2      0    1      1
#>   CCL3      1    1      2
#>   CCL4      0    1      1
#>   CCL5      1    1      2
#>   CCR2      1    1      2
#>   CCR4      1    1      2
#>   CCR5      1    1      2
#> 
#> , , metric = Pr(>Chisq)
#> 
#>         test.type
#> primerid      cont        disc      hurdle
#>   B3GAT1 1.0000000 0.129585466 0.129585466
#>   BAX    0.8939563 0.113258489 0.282815165
#>   BCL2   0.1790995 0.002067992 0.003529379
#>   CCL2   1.0000000 0.413797670 0.413797670
#>   CCL3   0.8762357 0.282921705 0.555087964
#>   CCL4   1.0000000 0.048533925 0.048533925
#>   CCL5   0.1103689 0.066384383 0.051840572
#>   CCR2   0.0457566 0.707673921 0.126745777
#>   CCR4   0.5792020 0.664184477 0.780357269
#>   CCR5   0.3913913 0.542876237 0.575552395
#> 
#> attr(,"test")
#> [1] "PopulationVbetaResponsive"
#> 
#> ZlmFt-> # Test if there is a difference between CD154+/Unresponsive and CD154-/Unresponsive.
#> ZlmFt-> # Note that because we parse the expression
#> ZlmFt-> # the columns must be enclosed in backquotes
#> ZlmFt-> # to protect the \quote{+} and \quote{-} characters.
#> ZlmFt-> lrTest(zlmVbeta, Hypothesis('`PopulationCD154+VbetaUnresponsive` -
#> ZlmFt-+         `PopulationCD154-VbetaUnresponsive`'))
#> Warning: Some levels contain symbols.  Be careful to escape these names with backticks ('`') when specifying contrasts.
#> Refitting on reduced model...
#> 
#> Done!
#> , , metric = lambda
#> 
#>         test.type
#> primerid        cont        disc     hurdle
#>   B3GAT1 0.000000000  0.19720610  0.1972061
#>   BAX    0.009603320  0.43127916  0.4408825
#>   BCL2   2.004979393  2.88482572  4.8898051
#>   CCL2   0.003581828 -0.10852740 -0.1049456
#>   CCL3   1.389919527 -0.59684167  0.7930779
#>   CCL4   0.695474388  1.22446841  1.9199428
#>   CCL5   1.643474587  0.01090422  1.6543788
#>   CCR2   0.037354159  1.44946742  1.4868216
#>   CCR4   0.977322744  0.13931993  1.1166427
#>   CCR5   3.776168456  0.50849269  4.2846611
#> 
#> , , metric = df
#> 
#>         test.type
#> primerid cont disc hurdle
#>   B3GAT1    0    1      1
#>   BAX       1    1      2
#>   BCL2      1    1      2
#>   CCL2      1    1      2
#>   CCL3      1    1      2
#>   CCL4      1    1      2
#>   CCL5      1    1      2
#>   CCR2      1    1      2
#>   CCR4      1    1      2
#>   CCR5      1    1      2
#> 
#> , , metric = Pr(>Chisq)
#> 
#>         test.type
#> primerid       cont       disc     hurdle
#>   B3GAT1 1.00000000 0.65698552 0.65698552
#>   BAX    0.92193505 0.51136195 0.80216477
#>   BCL2   0.15678342 0.08941768 0.08673459
#>   CCL2   0.95227640 1.00000000 1.00000000
#>   CCL3   0.23841869 1.00000000 0.67264409
#>   CCL4   0.40430856 0.26848550 0.38290384
#>   CCL5   0.19984941 0.91683346 0.43727657
#>   CCR2   0.84674577 0.22861343 0.47548935
#>   CCR4   0.32286067 0.70895803 0.57216874
#>   CCR5   0.05198758 0.47579209 0.11738096
#> 
#> attr(,"test")
#> [1] "Contrast Matrix"
#> 
#> ZlmFt-> waldTest(zlmVbeta, Hypothesis('`PopulationCD154+VbetaUnresponsive` -
#> ZlmFt-+         `PopulationCD154-VbetaUnresponsive`'))
#> Warning: Some levels contain symbols.  Be careful to escape these names with backticks ('`') when specifying contrasts.
#> , , metric = lambda
#> 
#>         test.type
#> primerid        cont         disc      hurdle
#>   B3GAT1          NA 2.632691e-01          NA
#>   BAX    0.009305455 4.373274e-01 0.446632837
#>   BCL2   1.748463371 2.500540e+00 4.249003565
#>   CCL2   0.002614910 1.215898e-07 0.002615031
#>   CCL3   1.278016527 1.692421e-03 1.279708948
#>   CCL4   0.636616606 1.271218e+00 1.907834528
#>   CCL5   1.553679693 1.810976e-02 1.571789452
#>   CCR2   0.025434721 1.431864e+00 1.457299039
#>   CCR4   0.955370495 1.297495e-01 1.085120034
#>   CCR5   3.317281808 5.264420e-01 3.843723848
#> 
#> , , metric = df
#> 
#>         test.type
#> primerid cont disc hurdle
#>   B3GAT1    1    1      2
#>   BAX       1    1      2
#>   BCL2      1    1      2
#>   CCL2      1    1      2
#>   CCL3      1    1      2
#>   CCL4      1    1      2
#>   CCL5      1    1      2
#>   CCR2      1    1      2
#>   CCR4      1    1      2
#>   CCR5      1    1      2
#> 
#> , , metric = Pr(>Chisq)
#> 
#>         test.type
#> primerid       cont      disc    hurdle
#>   B3GAT1         NA 0.6078831        NA
#>   BAX    0.92315144 0.5084152 0.7998617
#>   BCL2   0.18607002 0.1138073 0.1194925
#>   CCL2   0.95921700 0.9997218 0.9986933
#>   CCL3   0.25826815 0.9671850 0.5273692
#>   CCL4   0.42493864 0.2595383 0.3852290
#>   CCL5   0.21259304 0.8929499 0.4557118
#>   CCR2   0.87328861 0.2314604 0.4825602
#>   CCR4   0.32835604 0.7186919 0.5812583
#>   CCR5   0.06855509 0.4681066 0.1463342
#>